
© 2005 - CYBSEC S.A. Security Systems

CYBSEC S.A.
www.cybsec.com

Advisory Name: PHPMailer Infinite Loop Denial of Service

Vulnerability Class: Denial of Service

Release Date: 05.27.2005

Affected Applications:

 PHPMailer <= 1.72

Affected Platforms:
 Platform-Independent: Tested on Apache 2.0.52 / PHP 4.3.11 & PHP 5.0.4

Local / Remote: Remote

Severity: High

Author: Mariano Nuñez Di Croce

Vendor Status: Notified. No patch available.

Reference to Vulnerability Disclosure Policy:

http://www.cybsec.com/vulnerability_policy.pdf

Overview:

PHPMailer is a PHP class that supports the creation of HTML-based e-mails,
attachments, multiple TOs, CCs, BCCs and REPLY-TOs, SMTP authentication,
etc.

According to the developer, this class has been implemented in the following
Projects: eGroupWare, Mambo Open Source, PostNuke, MyPHPNuke, Mantis,
Moodle, XOOPS, Sourdough, Open Source Suite CRM, Xaraya, Ciao EmailList
Manage, Owl Intranet Knowledgebase, pLiMa (php List Manager), phplist, Octeth
Email Manager Pro, phpwebtools, sendcard and has more than 100,000
downloads.

A vulnerability has been discovered in PHPMailer that allows an attacker to raise
CPU and memory use to 100% in approximately 20 seconds.

© 2005 - CYBSEC S.A. Security Systems

Vulnerability Description:

The vulnerability specifically exists in the handling of long mail headers. A header
field >= 998 characters (without blanks) will make the Data() function enter an
infinite loop in which new memory keeps being requested.

The problem exists within the SMTP-Class Data() function defined in
class.smtp.php. Below is the respective code fragment:

 ...
 ...
 function Data($msg_data) {
 ...
 ...

 $field = substr($lines[0],0,strpos($lines[0],":"));
 $in_headers = false;
 if(!empty($field) && !strstr($field," ")) {
(1) $in_headers = true;
 }

(2) $max_line_length = 998; # used below; set here for ease in change

 while(list(,$line) = @each($lines)) {
 $lines_out = null;
 if($line == "" && $in_headers) {
 $in_headers = false;
 }
 # ok we need to break this line up into several
 # smaller lines
 while(strlen($line) > $max_line_length) {
 $pos = strrpos(substr($line,0,$max_line_length)," ");
(3) $lines_out[] = substr($line,0,$pos);
 $line = substr($line,$pos + 1);
 # if we are processing headers we need to
 # add a LWSP-char to the front of the new line
 # rfc 822 on long msg headers
 if($in_headers) {
(4) $line = "\t" . $line;
 }
 }
 $lines_out[] = $line;

 # now send the lines to the server
 ...
 ...

When processing the headers, $mail_headers is set to "true" in (1). Next, line
length is limited to 998 characters long in (2). Then, a substring of $line, from 0 to
the value set in $pos, is added to the $lines_out array in (3). Finally, in (4), if it is
processing a header field, an '\t' is added to the front of $line string.

Now suppose a header field like this is submitted:
From: AA... x 998

© 2005 - CYBSEC S.A. Security Systems

In the first loop, it will take out the "From:" substring. In the next iteration, $pos will
be set to "", because there are no blanks left in the string. Therefore, a null string
will be added to the $lines_out array. In the following instruction, $line will be
shortened one character, because it is assigned a substring of itself from the first
character. The problem is that in (4), one new character is added, so $line will keep
being of the same length (> $max_line_length) and the loop will become endless.

The processing of a malformed request like this one will make the server rapidly
starve memory and processor resources, turning it truly unstable (probably denying
access to other services as well) and a reboot may be needed to reestablish
normal functioning.

Solutions:

Probably, the quickest workaround is to limit the length of the strings received
before appending them to the class variables.

Anyway, a possible workaround is presented below:

...

...
function Data($msg_data) {
 ...
 ...

 $field = substr($lines[0],0,strpos($lines[0],":"));
 $in_headers = false;
 if(!empty($field) && !strstr($field," ")) {
 $in_headers = true;
 }

 $max_line_length = 998; # used below; set here for ease in change

 while(list(,$line) = @each($lines)) {
 $lines_out = null;
 if($line == "" && $in_headers) {
 $in_headers = false;
 }
 # ok we need to break this line up into several
 # smaller lines
 while(strlen($line) > $max_line_length) {
 $pos = strrpos(substr($line,0,$max_line_length)," ");

 #-------------- fix --------------------------
 if (!$pos) {
 $pos = $max_line_length - 1;

 }
 #---------- end of fix ----------------------

 $lines_out[] = substr($line,0,$pos);
 $line = substr($line,$pos + 1);
 # if we are processing headers we need to
 # add a LWSP-char to the front of the new line
 # rfc 822 on long msg headers
 if($in_headers) {
 $line = "\t" . $line;

© 2005 - CYBSEC S.A. Security Systems

 }
 }
 $lines_out[] = $line;

 # now send the lines to the server
 ...

Vendor Response:

 Vendor confirmed the vulnerability 2 days after the first contact and stated
that a fix will be available in the next version. He didn’t reply to any further contact
or provide information about the project state.

04.19.2005 – Vendor Notified.
 04.21.2005 – Vendor Confirmed Vulnerability.
 05.09.2005 – Vendor Contacted – No Reply.
 05.18.2005 – Vendor Contacted – No Reply.
 05.27.2005 – Vulnerability Public Disclosure

Special Thanks: Leonardo Cammareri, Leandro Meiners, Juan Pablo Perez
Etchegoyen.

Contact Information:

For more information regarding the vulnerability feel free to contact the author at
mnunez {at} cybsec.com.

For more information regarding CYBSEC: www.cybsec.com

